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Abstract-An analytical study is presented of the inward freezing of a sphere or a circular cylinder, 
initialIy molten and at the fusion temperature, when the outside surface is suddenly cooled. The treatment 
assumes, among other things, constant thermal properties and that the parameter p, the ratio of the 
latent heat to the sensible heat of the substance, is large. Basic series solutions are first derived and 
these are then followed by a two-region analysis which is needed to accommodate the sharp change in 
thermal profile just before the centre of the sphere or the cylinder solidifies. Although the theory is 
strictly asymptotic in nature, results compare well with numerical solutions of the full problem for 

a = IO and 20 (cylinder) and @ = 10 (sphere). 

I 

radius of body; 
specific heat at constant pressure; 
thermal conductivity; 
Bessel functions of zero- and first-order 
respectively; 
zeros of Jo ; 
latent heat of fusion; 
radial coordinate; 
penetration depth; 
temperature; 
= T$ - T$, temperature difference; 
time; 

q, r, s, R, S, dimensionless coordinates. 

NOMENCLATURE Affices 

0, body wall; 
F. fusion; 
* physical variables; unstarred quantities 

denote dimensionless variables; 
_ 

/;, 

dimensionless variables of region II; 

1 (cylinder) or 2 (sphere). 

IN THE last few years there has been a considerable 
upsurge of interest in multiphase processes, which are 
of particular concern in such diverse fields as re- 
frigeration, thermoplastics, el~troche~st~, metal- 
casting and welding, and geophysics. For example, 
many theoreticians and experimentalists have recently 
turned their attention to deep penetration welding, 
which has an important application in the construction 
of nuclear power ins~l~ations. &eek symbols 

= $, dimensionless parameter; 
PD 

stretching factor of equation (3.1); 
thermal diffusivity; 
density; 
normalised dimensionless coordinate; 

A feature of these problems is the existence of a 
moving interface between the phases, at which thermal 
energy in the form of latent heat is liberated. Unfor- 
tunately, the mathematical condition at this interface 
is non-linear and, in consequence, generalized ana- 
lytical solutions are not readily available, even for 
simple geometries. A good number of the works on 
this topic have been reviewed by Rubinstein [l] and 
Carslaw and Jaeger [2], but they mostly involve linear 
heat flows. investigations involving “finite” geometries 

T*-T$ 
= ~, normalized dimensionless 

TF*-G temperarure; have, in general, been made by using numerical 
Euler’s constant. techniques. 
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In order that further inroads be made into the ever 
increasingly complex problems occurring in industry, 
it seems highly desirable to have a general technique 

for treating them. In this paper it is proposed to treat 

the problems by perturbation methods, the critical 

large parameter being 

ii=++ 
P’D 

the ratio of the latent heat to the heat capacitance 

of the solidified phase. Here L is the latent heat of 
fusion of the substance, cp the specific heat and & the 

temperature difference between the fusion temperature 
and the outer surface temperature. Therefore. we are 

concerned with situations where, for example, the tem- 

perature difference, &, is small and the latent heat is 

large (see Table 1). 

Table I 

Material 

Aluminium 
Copper 
Gold 
Iron 
Lead 
Magnesium 
Mercury 
Nickel 
Zinc 

Specific heat. Latent heat 
cp (at 0°C) of fusion, 

calgg’ “C’ L cal;g 

0.2096 96 
0.0909 49 
0.0350 15 
0.1045 64 
0.0302 6 
0.2460(18’C) 90 
0.0335 2.8 
0.1060 73 
0.09 I8 24 

(L;‘c,) -C’ 

458.02 
539.05 
429.51 
6 12.44 
199.68 
367.85 

84.58 
689.68 
26 I ,44 

The problems considered here are those of the 

inward solidification of a circular cylinder and of a 

sphere, which are initially at the fusion temperature 
and whose outer surfaces are maintained at a tempera- 

ture less than that of fusion. Our aim in the analysis 

is amongst other things to derive a formula determining 
the time required for the cylinder or sphere to become 
totally solidified and the temperature profile at that 
moment. 

The majority of investigations dealing specifically 
with cylinders and spheres are catalogued in the 

introduction by Tao [3] in his paper on generalized 
numerical solutions for these problems. Other note- 
worthy contributions have been made by Poots [4]. 
who found short-time solutions, and Beckett [5] who 
extended Poots’ analysis and also found numerical 
solutions employing the Hartree-Wormersley tech- 
nique. More recently, Pedroso and Domoto [6,7] 
developed perturbation solutions for the sphere prob- 
lem and modified the resulting series. which are 
divergent at the centre of the sphere, by means 
described in Section 2. 

The major simplifying assumptions made are that 
the melt is always at its fusion temperature and that 
there exists at all times a sharply-defined line of 

division, the solidification front. between the solid and 
the liquid (the latter being a good approximation 
especially for pure metals). These assumptions enable 
straightforward perturbation solutions for the tem- 

perature and the inward travel of the front to be 
derived. This particular work has been carried out by 

Pedroso and Domoto [6] for the sphere and by Riley 

[8] for the cylinder and for convenience WC restate 
their results in Section 2. The instant at which total 

solidification is attained represents a singularity in the 
straightforward approach, and this we set out to treat 

by an expansion theory strictly valid only for /I >> 1. 

We discover in Section 3 that when the interface is 

close to the centre, the features of the heat flow take 

on quite different forms in two terminal regions. one 

near the interface which is controlled by the latent 
heat condition and the other further out where (in 

contrast with the original solution) the variation of 

temperature with time plays a key part in fixing the 
final development of the solidification front. Our sol- 

utions are compared with Tao’s [3] results for the 

sphere for /I = 10, and with Beckett’s [5] results for the 

cylinder for /I = IO and 20. 

2. THE GOVERNING EQUATIONS AND BASIC 

PERTURBATION SOLUTION 

The two problems under consideration in this paper 

are summarized in Fig. I. Initially the material within 

Ftc;. 1. The spherical or cylindrical configuration for 
the inward-travelling solidification front. 

the spherical or cylindrical body 0 < r* < a* is com- 
pletely molten and at its uniform fusion temperature 
r,*. but at time t* = 0 a lower constant temperature T$ 

is suddenly imposed, and thereafter maintained, at the 
surface I* = a*, which causes the body subsequently to 
solidify inwards. The radial distance of the solid/melt 
interface from the surface r* = u* at time t* > 0 will be 
denoted by S*(t*) and we shall suppose that the molten 
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part of the sphere or cylinder always remains at the 

fusion temperature, while the flow of heat through the 

solidified part is purely radial. 

For both geometries suitable non-dimensional vari- 

ables are obtained by writing 

where 

p= L 
cp( T; - TJ) ’ 

T* is the temperature of the solid state and K its 
thermal diffusivity. Further, it proves to be convenient 

to consider T as a function of S, with 0 depending 

on the independent variables R, S (see Riley [8]); the 

variation of temperature within the solidified material 

is then described by the heat-conduction equation in 

the form 

($+;$9 = $#(S) (2.3) 

for I = 1 (the cylinder) or 1 = 2 (the sphere), subject 

to the boundary conditions 

0=0 at R=l, f3=1 at R=l-S (2.4) 

30 dS 
_= -_ 
C7R dz 

at R=l-S (2.5) 

and the obvious initial conditions. Equation (2.5) 

expresses the usual latent heat condition based on an 

energy balance at the solidification front. The two 
major advantages of the prescription (2.3-25) are that 

the front is set permanently at one end of the region 
of interest, and the total solidification time TV, i.e. the 

instant at which the solidification front reaches the 

centre, r* = 0, and the associated (terminal) tempera- 
ture distribution Q,(R), are given precisely by 

7, = 7(S = 1) and Of(R) = O(S = 1). 
The sole fundamental parameter is fl, and in the 

remainder of our discussion we shall suppose that 

/l >> 1 (2.6) 

(see Section 1) and seek an asymptotic solution. We 
begin by expanding the temperature field and time in 
straightforward fashion: 

(2.7) 

(2.8) 

and substituting into (2.3-2.5) along with the appro- 
priate initial constraints. The time-dependence is there- 
by relegated to a secondary role. In principle as many 
terms of the series as we please may be calculated, and 
we quote the results: 

for A = 2 (sphere), 

o=(‘-S)(l-R) 

RS 

+ 0(pe3) (2.9a) 

3S2-2S3 S2 
7=~+~-4,~~l_s)+O(B~31 (2.W 

6 

(due to Pedroso and Domoto [9]); 

1-R 
for I = 1 (cylinder), setting VI = s 

H = ln(1 -Sq) 

ln(l-S) 

-(l-s4)2+[(1-s)‘-1]~ I;’ 
{4/I(1-S)31n2(1-S)}+O(~-2) (2.10a) 

z = ~{(l-S)2[ln2(1-S)- l] fl} 

+1+(1-S)’ +O(p-‘) (2.10b) 

(due to Riley [12], who also gives the O(b-‘) terms 

in (2.10)). For small S the results are identical with 

the small-time solutions for any /I found by Poots [4]. 

No information is given, however, on the thermal 

properties at solidification for, as the interface nears 

the centre (7 -+ TV, S -+ l), not only does the accuracy 

of the approximation routine (2.7-2.8) deteriorate but 

the expansions for 0 and T break down. Therefore 
compensatory measures must be taken, particularly 

for some range 0 < 1 -S << 1, to remove the singu- 
larities at S = 1 in the straightforward scheme. With 
this in mind Pedroso and Domoto [6,7], for A: = 2, 
used an Euler transformation and an adaptation of the 

strained coordinates method incorporating a Shanks 
transformation to force the time-variation to be reason- 

ably well-behaved at S = 1, but the methods do not 
for instance bring out all the physics of the problem 
and we suggest that our approach, employing a rational 
matched expansion theory, is more enlightening as well 
as systematic since it provides both physical and 
mathematical insight into the essential nature of the 
freezing process near the centre. Consequently, from 
an inspection of the singular expansions (2.9-2.10) we 
shall now deduce the new form that the process 
develops in the vicinity of the terminal station S = 1 
for A= 1 and A= 2. 
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3. THE NEW STRUCTURE NEAR COMPLETE 
SOLlDlFICATlON 

Further, t in (3.3) must approach (2.9b) as s + ccl. 
which imposes 

Near the centre the substitution 

S = 1 -A;,s (3.1) 

is appropriate. where s = O(1) defines the region of 

invalidity of (2.9%2.10) and the factor Ai, c 1 is to be 
determined for each i = 1.2. 

(a) The sphere 

Putting (3.1) into (2.9b) implies that the second term 

in T’(S) overtakes the leading one when A2 - p-l/‘, 

so that (2.9b) is then incorrect. and the same estimate 

is provided by (2.9a). However the temperature field 
also takes on quite different characteristics when R is 

of Oil) and when R is of 0(A2). under (3.1). and we 

may surmise that the heat-flow should be examined 

in two separate regions when 

A2 = /.1-“‘. (3.2) 

Starting in the first domain, region I, the new expan- 

sions stemming from (2.9a-b) are 

fl = T,+B-“2T,+8-‘T2+O(B~3’2) 

1 to(s) tl(s) t2w 
(3.3) 

7=hi/l+8j.'+Bi+o(P-"") 

for s and r of O(1). where 

r = p-li2R 

with the boundary conditions that 0 = 1 on r = s, the 

latent-heat balance: 

on T = s, 

(: 
;lr jTo+flm1!2Tl +...} 

and matching to the basic scheme (2.9) as s + a, with 
r N s, and to region IT (see below) as r + co with s fixed. 

Substituting (3.3) into (2.3) with I = 2 and equating 
terms of equal order in fl-‘, the solutions satisfying 
the interface conditions are found to be 

To = 1 +B,(s) ;-! 
i i 

, 
s 

1 - 3s2 .?--s 1 
L”” ----, _~ ---- 

6 
t1 

3 
-45+o(s-“). 

s 

52 2 
t2 - F+~~+O(S-‘) as s -+ cc: (3.5) 

and also secures the merging between 0 in (3.3) and 

(2.9a). Anticipating the match with region II, we then 

have that, as r + m in I, the temperature takes on 
the form 

+ 0(pm3’2). (3.6) 

In region II, which is required to continue from I, 

i.e. from (3.6), out to R = 1, both (3.6) and (2.9a) 

indicate that R itself is the relevant radial coordinate 

and that 

fl = fi~‘Voot_fl~‘i; +o(p-3’2) (3.7) 

should be set. We now attempt to comply with the 

surface condition 

To = T1 = . = 0 at R=l (3.8) 

as well as joining to I when R -+ 0 and to (2.9a) when 
s + CC for 0 < R < 1. Upon insertion of (3.7) into the 

full equation (2.3). terms 0(fl-‘12) give 

(Lt+;2J*o=;!$ (3.9) 

while consistency between (3.6) and (3.7) as R-P 0 

demands that 

B,(s) = s. to(s) = ; (I - 3~~). To = -\‘ 
I 

and 

s G(s) To -----+0(R) as R-+0. 
R s 

(3.10) 

Finally, matching with (2.9a) imposes 

where 

-.? ?t; 
Bo=tb. B, =tb2, 

Bz = ;:‘i (2Bo + sBb + 6tb t; - 6t’,2). 
0 

x &-(I-R)‘]-1:0[1(1-~)4]]+... 
1 

as s-+co. (3.11) 

Hence the heat flow in II is dictated by the closed 
problem (3.8)-(3.11) for To. 
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(b) The cylinder 
Under (3.1) we now find that the value of A1 CC 1 

which first renders (2.10a, b) invalid is given by 

AilnA, = + (3.12) 

and that again there is a pronounced distinction 

between the behaviour of 0 near the interface (q - 1) 

and further out (1 -q - 1) as S + 1, which leads to 
the following two-tiered approach. 

In the inner region I, where now 

1-V yxPP 
Al 

and s are O(l), the temperature and time variations 

develop in the forms 

t1(s) tz(s) t3(s) 
(3.13) 

’ =“-~-P(lnA1)-~-“’ 

subject to the interface conditions at r = 0, matching 

with (2.10) as s + co (with r - s) and with region II 
below as r -+ co. The heat-flow equation with i = 1 

then produces the solutions 

T = Ai(s)ln I+’ 
( > 

for i=l,2,... 
S 

where 

AI 1 A,-&A, ” t;2--tltJ 
_=_ _=__ _= 

S 
I 1 

t1 S t;’ S tP 

andass+co, 

s2 1 
t1 -T-z, tz _;lns-;-; 

1 
t3 _-Ins+ 

4 
&+ OK‘?. 

Moving on to region II in which q and s are the 

independent variables, we set 

PI if+2 
0 = ~ 

InA., +(In+O+O((‘nAJ”) (3.14) 
1 

as implied by (2.10a) and (3.13). Terms of equal order 
in p -’ in the heat-flow equation then give 

(3.15) 

with the boundary conditions 

at q=O, f1=P2=0 

as s+ ~0, $ -+ln(l-q) 

G - -lnsln(l-q) 

+ $ { 1 - (1-q)’ + (1 -~)~ln(l -v)} 

+&{8(l-r1)2-3(l-~)4 

+2(1-~)41n(l-~)-5}+... (3.17) 

to merge with (2.10a), and lastly we require agreement 

with region I near 7 = 1. Rearrangement of H in (3.17) 

for r >> 1 shows however that, for this last requirement 

to hold, 

A,(s) = 1, tl(s) = g--i, ~~ = ln(l-q), 

1 2 1 
A,(s) = -Ins, t=(s) = is21ns-f+4 

and 

T2 - -lnsln(l-q)+it;(s)+o(l) as q-+-. (3.18) 

Therefore we are left with the closed problem 
(3.15-3.18) controlling both the secondary heat-flow 

T2 and the time-factor t3(s). 
The fundamental problems arrived at in (a) and (b) 

will be solved in Section 4 below. However. before 

moving on to the solution we feel a few further 
comments concerning the new double-structure are 

worthy of note. First, from the physical standpoint we 

observe that, except in the close neighbourhood of the 
solid-liquid interface, the temporal dependence of the 
temperature within the solidified material can@ be 

neglected in the final stages of the solidification even 

though the latent heat parameter fl is large. For the 
righthand sides of (3.9) and (3.15) are effectively time- 
variations written in the S-R coordinate system. Thus, 

although the time-dependent factor in the heat flow 
has a relatively small influence during most of the 

process, its effect accumulates and becomes of the same 
order of magnitude as the spatial-dependence when 
the actual distance of the interface from the centre is 

as small as aA,, explaining why at that stage the 
supplementary expansions in I and II are required 
and the temporal variation is retained in the governing 
equations (3.9), (3.15). Second, examination of the 
scalings shows that it is not enough to consider one 
region on its own when (1 -S) is of order Ai. The 
inner region I provides for a proper appreciation of 
the latent-heat condition at the front, while region II 
(where the temperature is an order of magnitude lower 
than in I) is needed to account for the prime importance 



of the time dependence throughout the major part of 
the body as well as allowing for the condition at the 
surface r* = II*. 
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We remark that (4.6a) has a logarithmic growth 
as R + 0. 

4. SOLUTION OF THE TERMINAL PROBLEMS 

The essential problems near complete freezing, as 

stated in Section 3 (a) and (b), are amenable to treat- 

ments by transform methods. For convenience we write 

q = .s2. (4.1) 

(a) The splzrrt> 

Partly to confirm the consistency of the terminal 
structure envisaged in Section 3(a) but more especially 

for the purpose of bettering the accuracy of 0JR) for 
moderate values of p, we have taken the analysis of 

zone 11 one step further by working out the second 
order term Y?i of expansion (3.7). Application of the 

matching techniques employed previously shows that 

7, ,must satisfy 

Putting T0 = F/R and R = 1 -_x, we define the finite 

Fourier sine-transform of F: 

and 
FE F(x, q) sin nrrx dx. (4.2) ^ t;(s) 1 1 

T, --f 
US) (flb))2 

R 
2+2sz-~” - -2- +o(l)asR-tO 

s s 

?i=O at R=l 
Equation (3.9) and the conditions at x = 0. 1 yield the 

solution 

F = (_ 1)” F enwi2 

i j 

4 
/j + &2 ,-nw,:2~qI , 

% I 

the constraint (3.11) then implies A = 0 and thence. 

taking the inverse of (4.2). we obtain the Fourier series 
solution 

F(x, 4) 

where I is the incomplete gamma function. On inte- 

gration (3.10) now gives 

ri _&$I2 +4$/2 

=- 
0 

,‘i 1’2 t 7 erfc(n7i J(q/2)) 

with erfc denoting the complementary error function, 
and so when the sphere is completely solidified 

or from (3.3) the total solidification time is 

where the bar denotes the transform. The most sig- 
nificant result from (4.7) would obviously be an explicit 

formula for T-l(R,O) but unfortunately we have so far 
been unable to express the inverse of (4.7) even at 

4 = s = 0, in anything more concise than a double 

series form, despite several different approaches to the 
problem (details of which are omitted). On the other 

hand a reasonable estimate of the behaviour of T,(R,O) 
may be obtained by retaining in the series (4.7) only 
the terms for which m = n; the correction to the 

1 1 
-1-p + o(fl-2). 

terminal profile (4.6a) then comes out at 

‘f = 6 + @- 3(2n)i,2f13,2 (4.4) 1 

B 
(2- 3R + R2) [estimate] (4.6b) 

(b) The cylinder 
Correspondingly the final temperature profile comes 

from 

F(x, 0) = - 2 
( 2 )I” g Gij! sin nnx = _ ($)“‘/(nR) 

where 

~(TcR) = - 
5 

‘Rln(2sinit)dt (4.5) 
0 

is Clausen’s Integral (Abramowitz and Stegan [9]. 

p. 1005), so that to first order 

1’2 f(xR) 
-R-. (4.6a) with j, denoting the zeros of the zero-order Bessel 

function Jo(Z) and J,(Z) being the Bessel function of 

By using the Fourier sine transform and pursuing a 

course of action akin to that for Fob. $ is determined 

implicitly by Y?i = F,/R and 

Putting x = 1-q and using the known results for 
ti and Ti, (3.15) becomes 

li: M2 

( ! 

;T2 
-,x- =_2_ 
x CN (7.x 

(4.7) 
(‘Y 

Applying the finite Hankel transform 



Inward solidification of spheres 

first order, we find the solution of (4.7) satisfying the 

conditions at x = 0, 1, to be 

s 4 
T = ei:412 -1 

n e-l:“/2lnuda._ 
m 2[J~ci,)lz 

which also recovers (3.17) precisely. Hence pz is deter- 
mined as the Fourier-Bessel series 

1 

from which the following contribution to the terminal 

temperature profile (q = 0) is obtained: 

C(x, 0) 

(lnA# 

1 m J&4 lnj, = ~ 
2(ln A,)’ 

(y-ln2)lnx-4x 
I [J~(h)12j,2 1 (4.9) 

The derivative of the temporal distribution t3(q) is 
now given by the finite part of (4.8) at x = 0. Therefore 

t3tq) =:f 
eiid2 02 

I [J~ci,)12j~ s 
e-iitr’* In u du (4.10) 

4 
and we deduce that the resultant contribution to the 

total solidification time rJ is 

- t3 (0) 

m 

+2$[J1::;‘j4]. (4.11) 
In n 

5. RESULTS AND DISCUSSlON 

For the sphere the travel of the solid-melt interface 

towards the centre and the terminal temperature dis- 
tribution of(R) of (4.6a, b) are depicted in Fig. 2, along 

0.2 
x 

x 

x \ 
\ 

r 

.I /I 

0 I 

Y 

0.6 IO 

S 

FIG. 2(a). Time r vs front position S for the sphere 
when p = 10. The continuous line is the solution 
including the two-region formula (4.4) near S = 1, 
the crosses are Tao’s [3] numerical results and the 
dashed curve indicates the inefficiency of the original 

series (2.9b). 

8 

1513 

R 

FIG. 2(b). Comparison for p = 10 between the ter- 
minal temperature profiles computed by Tao [3] and 
those due to (a) the one-term result (4.6a), (b) the 
two-term formula incorporating the estimated cor- 

rection (4.6b). 

withTao’s [3] computed results, when /l = 10. Remem- 

bering that the relative error in the theory is 0(p-ii2), 
or about 0.3 in this case, the agreement is satisfactory, 
and it is interesting to note that if the logarithmic 

growth 1nzR in (4.6a) is subtracted off for all values 

of R then the agreement from just the one-term 

formula (4.6a) is improved over the entire range. 

For the cylinder, in order to gauge the applicability 
of our p >> 1 analysis for moderate values of 8, graphs 

of Beckett’s [5] numerical results for /3 = 10, 20 are 
drawn in Fig. 3 for reference. They agree, incidentally, 

with the work of Allen and Severn [lo] and Tao [3] 
within the limits of graphical accuracy, except in the 

vicinity of the centre where they are believed to be 

more accurate. For the same /?‘s the solutions given 
by the basic series (2.10a) are displayed in Fig. 4, 
together with the final temperature distribution derived 

from the two-region examination, namely 

x 

although, to be precise, only the first ten terms of (5.1) 

have been included in Fig. 4. For each 8, series (2.10a) 
is in good agreement with the computed values of 
Fig. 3 for 7 < 0.9r,-, but near total solidification it is 
necessary to combine (2.1Oa) with the formula (5.1), 
and the steep gradient of the thermal profile is then 
correctly predicted. Figure 5 shows both the computed 
solutions of Beckett [7] and the results due to the 
present work (series (2.10b) and the I-II analysis) for 
the interface position S(r) when /I = 10, 20, and here 
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I-R 

/?r= I 2 3 4 5 5.3 

8 

J 
0 I 

I -I? 

FIG. 3. Temperature distributions during the freezing for 
p = 10 and 20, from Beck&t’s [5] numerical solutions of 

the full problem, when j. = I. 

I 

8 

. 

], 

. 

. p-10 
. 

I--R 

. 

a 

1 
0 I 

I--R 

FIG. 4. 0(R) at various times pi according to the asymptotic 
theory, with B = 10, 20 and 1 = 1. The continuous lines are 
all from (2.1Oa) except the final profiles which are due to 
the I-II analysis (e.g. (5.1)). The dots are numerical final 
profiles transferred from Fig. 3 for comparison. Values of fit 

are as in Fig. 3. 

S 

FIG. 5. Front location Svs timeD? when /I = IO,20 for i = 1. 
The crosses are the computations of Beckett [5] and the 
continuous curves are mainly (2. lob) but with the tv o-region 

result (4.9) incorporated near S = 1. The dashed line> indicate 
the error in (2.10b) as S + 1. 

again (2.10b) is almost identical with the full solutions 

for nearly all the motion. Lastly, however, near S = 1 
the double-structure is called upon to cope with the 

irregularity in (2.10b), successfully follows the numeri- 

cal values there and produces the final solidification 

time 

which, if we keep, say, ten terms of the infinite series, 
is close to the calculated times. 

Bearing in mind the asymptotic (/I -+ m) nature of 

the theory. the agreement between it and the numerical 
solutions of the full equations for /I = 10, 20 is indeed 
encouraging, for both thermal and temporal variations. 

It is noteworthy that. if /I = 10. A, z 0.28 and the 
relative order of magnitude of the neglected terms at 
each stage is (- l/In A,) or approximately 0.79. Addi- 

tionally we observe that when (5.2) is taken to just two 
terms. i.e. if only 

(5.3) 

is used, then we obtain /J’T~ = 1.25. 2.15, 5-25 when 
/3 = 4, 10. 20 as compared with Beckett’s results 
fitr = 1.19. 2.69. 5.30 respectively. Thus (5.3) is suffi- 
ciently close an approximation for fi > 4 to warrant 
consideration as a general solidification-time formula 
for the cylinder. with (5.2) acting to give extra accuracy 
if desired. 

We therefore conclude that, provided the parameter 
b is large enough, practically all of the freezing process 
has been described theoretically. The natural develop- 
ment. from series (2.9). (2.10) to the two-region expan- 
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sions of Section 3, is well illustrated by the comparisons 

in Figs. 2-5. The one remaining gap in the large-b 

analysis lies well within the region I, in fact in an 

exponentially small zone of the S-R plane where the 
logarithmic behaviour in (4.6a) and (5.1) forces the 
solutions to become invalid at the last moment. This 
irregularity requires a further examination to be made 

very close to S = 1, R = 0. The finer details have not 
been worked-out, but because of the minute scale in- 

volved we may infer that the corrections to our 

formulae are merely exponentially small ones and so 
need not be regarded as too significant. 

The realization that near the end of the inward 

solidification process for fl >> 1 the principal features 

in the development of the temperature distribution 
take place in two separate spatial regions has enabled 

our understanding to be extended much further 
towards the ultimate solidification at the centre. The 
two-tiered phenomenon, wherein the innermost parts 

of the body are dominated by the required latent heat 

supply which inturn controls the flow of heat through 

the rest of the material. evolves because of the relatively 

fast change in the nature of the process just before 
solidification is completed, despite the fact that the 

time-scale of the whole freezing operation is large. The 
use of the rational theory based on the expansion 

scheme of Section 3 allows detailed analysis of the 
double-structure and thereby affords, we believe, more 

physical insight into the qualitative behaviour of the 

heat flow. It also indicates that for high p some 
numerical difficulty might be expected due to the steep- 

ness of the temperature profile near solidification and 
that unless there is some local mesh-refinement accu- 

racy will be lost. The greater B is the more relevant 
is our work, and Table 1, giving values of L/c, for 

some common metals. shows that fl can indeed be 

large for realistic temperature differences; in practice 

if a large temperature difference were set it would not 

generally remain so because of the heating of the 

surrounding medium. Our perturbation approach can 

no doubt be directly applied to give simplistic models 
of many problems of practical interest. such as the 
solidification of cylindrical castings or pipes, the 

cooling of planets and the freezing of hailstones and 

ballbearings. The model is readily modified to include 

many other features, e.g. radiation or periodic con- 

ditions at the surface, and may well preclude the 
necessity for extensive computation in more complex 

situations. 

4. 

5. 
6. 

7. 

8. 
9. 
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SOLIDIFICATION INTERNE DE SPHERES ET DE CYLINDRES CIRCULAIRES 

R&urn&On prCsente une ktude analytique du gel interne d’une sphere ou d’un cylindre circulaire, 
initialement fondu et h la tempkrature de fusion, lorsque la surface externe est brusquement refroidie. 
Entre autres hypoth&es, on suppose que les propri&t& thermiques sont constantes et que le paramPtre 8, 
rapport de la chaleur latente h la chaleur sensible, est grand. On dCtermine tout d’abord des solutions 
sCries fondamentales et on degage une analyse b deux rOgions qui est utilisiie pour tenir compte du 
brusque changement du profil thermique juste avant que le centre de la sphere ou du cylindre se solidifie. 
Bien que la thtorie soit strictement asymptotique par nature, les rbsultats s’accordent bien avec les 

solutions numkriques du problime entier pour p = 10 et 20 (cylindre) et /I = 10 (sphtre). 

DER ERSTARRUNGSVORGANG IN KUGELN UND ZYLINDERN 

Zusammenfassung-Eine analytische Untersuchung befaDt sich mit dem Erstarrungsvorgang in Kugeln 
oder Kreiszylindern, wenn bei aufllnglich fliissigem Inhalt bei Schamelztemperatur die AuBenwand 
pliitzlich gekiihlt wird. Bei der Behandiung des Problems werden unter anderem konstante thermische 
Eigenschaften angenommen und vorausgesetzt, da8 die latente Wlirme gegeniiber der fiihlbaren WLrme 
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grog ist. Urn den Knick im Temperaturverlauf im Zentrum der Kugel oder des Zylinders vor dem 
Erstarren zu erfassen, wird eine Unterteilung in zwei Bereiche vorgenommen. Obwohl die Theorie ein 
Naherungsverfahren darstellt, stimmen die Ergebnisse gut mit den Resultaten numerischer Rechen- 
verfahren fur /I = IO und 20 (Zylinder) und j = 10 (Kugel) iiberein, wobei B den Quotienten aus latenter 

Warme und fiihlbarer Wiirme darstellt. 

3ATBEPAEBAHME IIIAPOB I4 KPYIOBbIX IJMJIMHJIPOB 

AHHoTaqm - B pagore II~OBOAMTLR aHa_mTwecKoe mztenoaartue 3arsepnesatuin mapa MUM 
KpyrOBOrO UWll4HApa, HaXOAflulerOCR CHaVaJla B paCI?JlaBJleHHOM COCTORHMM IlpM TeMnepaType 

llAaBJIeHWl, HapymHaR nOBepXHOCTb KOTOpOrO BHe3aIlHO OXJlaX(AanaCb. HapRny C ApYrMMll AOny- 

L!JeHMRMM, CAeNaHHblMM B pa6ore, TenJlOBble CBO!kTBa MaTepMa.Na CYMTBtOTCfl nOCTOIIHHblMH, a 

napaMeTp p (OTHOUleHMe CKpblTOti Ten,lOTbl K OLUYTMMOi? TennOTe) i,p!,tiMMaeTC,I 6OIIbUlMM. nO,,y- 

YeHHble BHayane o6twe peweHm B BtIAe pnnos noABepratoTcn 3aTeM aHami3y nnn AB~X o6nacreA, 

Heo6xonki~~o~y L!“R nptfBeAeHt,rl B COOTBeTCTBHe pe3KllX M3MeHeHMfi TeMTTepaTyptiOrO npO@,,lfl 

HenocpeAcTBetlHo nepen ‘3aTBepAeBaHMeM uettTpa luapa MN utmMHnpa. Xo~rr Teopwn cyry6o 

aCMV,TTOTMYHa “Cl CBOeMy XapaKTe[>y, pe3yJbTaTbI XOpOUlO COrnaCytOTCfl C nOnHblMM ‘IMCJ,eHHblMM 

peuleHtinhiw 3aAaYt4 nm /3 10 M 20 (UWltiHAp) M p 10 (Ulap). 


